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Abstract
We describe an algebraic framework for studying the symmetry properties of
integrable quantum systems on the half line. The approach is based on the
introduction of boundary operators. It turns out that these operators both encode
the boundary conditions and generate integrals of motion. We use this direct
relationship between boundary conditions and symmetry content to establish
the spontaneous breakdown of some internal symmetries, due to the boundary.

PACS numbers: 02.30.Ik, 02.20.-a, 03.65.-w, 03.70.+k, 11.10.-z, 11.30.-j

1. Introduction

This paper describes a framework for studying the symmetry properties of integrable quantum
systems on the half line. As can be expected on general grounds, the presence of a boundary
in this case has a strong impact on the dynamics and the symmetry content of the systems.
It gives rise to a variety of boundary-related phenomena with direct applications to impurity
problems in condensed matter, dissipative quantum mechanics, open string theory and brane
physics. The recent efforts to gain a deeper insight into these phenomena stimulated a series
of investigations [1–9] in the subject. Among others, one should mention the attempts to
develop an algebraic approach. The new strategy there is to introduce [1, 2] the so-called
boundary operators, which translate into algebraic terms the associated quantum boundary
value problem. It is far from being a surprise that, if possible, an algebraic treatment of the
boundary value problem turns out to be simpler than the standard analytic one. In the context
of integrable systems, the algebraic framework provides a further advantage—the search
for general integrability preserving boundary conditions and their implementation becomes
straightforward.

The concept of boundary algebra, which we will be dealing with below, has been
introduced in [10] and is inspired by Cherednik’s scattering theory [11] for integrable models
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on the half line. An essential feature of this algebra, denoted in what follows by BR , is
that it enables one to reconstruct [10] not only the scattering matrix, but also captures the
off-shell dynamics (correlation functions) of the system [12, 13]. Therefore, one can apply
BR in the study of symmetries as well. This observation is the basic starting point of our
investigation. The most interesting property emerging from it is that, besides encoding the
boundary conditions, the boundary operators also generate integrals of motion. The main goal
of the present paper is to investigate this remarkable feature and to explore the consequences
from it.

The paper is organized as follows. In the next section we summarize those basic features
of the boundary algebra BR and its Fock representations, which are needed for our analysis.
The general structure involved in the discussion is illustrated by means of the gl(N)-invariant
nonlinear Schrödinger model on the half line. The quantization of the model in terms of
BR is briefly described in section 3. Section 4 is devoted to a purely algebraic analysis of
the symmetry content of the NLS model. In section 5 we derive a large class of boundary
conditions which preserve integrability. The phenomenon of spontaneous symmetry breaking
is established in section 6. Section 7 contains a detailed study of the case N = 2. Finally,
section 8 collects our conclusions.

2. Boundary algebras

We recall first the basic structure of a boundary algebra, referring for details to [10]. BR is an
associative algebra with identity element 1 and two types of generators:

{ai(k), a∗i (k) : i = 1, . . . , N, k ∈ R} (2.1)

and

{bji (k) : i, j = 1, . . . , N, k ∈ R} (2.2)

called bulk and boundary generators, respectively. N is the number of internal degrees of
freedom, whereas k stands for the momentum in the non-relativistic case or the rapidity in the
relativistic one. Equations (2.1) and (2.2) are subject to the following constraints:

(i) bulk exchange relations:

ai1(k1) ai2(k2) − R
j1j2
i2i1

(k2, k1) aj2(k2) aj1(k1) = 0 (2.3)

a∗i1(k1) a
∗i2(k2) − a∗j2(k2) a

∗j1(k1) R
i1i2
j2j1

(k2, k1) = 0 (2.4)

ai1(k1) a
∗i2(k2) − a∗j2(k2) R

i2j1
i1j2

(k1, k2) aj1(k1)

= 2π δ(k1 − k2) δ
i2
i1

1 + 2π δ(k1 + k2) b
i2
i1
(k1) (2.5)

(ii) boundary exchange relations:

R
l2l1
i1i2

(k1, k2) b
m1
l1
(k1) R

j1m2
l2m1

(k2,−k1) b
j2
m2
(k2)

= b
l2
i2
(k2) R

m2m1
i1l2

(k1,−k2) b
l1
m1
(k1) R

j1j2
m2l1

(−k2,−k1) (2.6)

(iii) mixed exchange relations:

ai1(k1) b
j2
i2
(k2) = R

l1l2
i2i1

(k2, k1) b
m2
l2
(k2) R

j2m1
l1m2

(k1,−k2) am1(k1) (2.7)

b
j1
i1
(k1) a

∗i2(k2) = a∗m2(k2) R
l2m1
i1m2

(k1, k2) b
l1
m1
(k1) R

j1i2
l2l1

(k2,−k1). (2.8)

Here and in what follows the summation over repeated upper and lower indices is always
understood. Finally, using already standard notations, the exchange factor R obeys
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R12(k1, k2) R12(k2, k1) = 1 (2.9)

and the spectral quantum Yang–Baxter equation (in its braid form)

R12(k1, k2)R23(k1, k3)R12(k2, k3) = R23(k2, k3)R12(k1, k3)R23(k1, k2). (2.10)

These compatibility conditions on R, together with equations (2.3)–(2.8), define the algebra
BR . Let us observe also that the generators {bji (k)} close a subalgebra SR ⊂ BR , which has
been introduced by Sklyanin [14] and which will play a distinguished role in our discussion
below.

It is worth mentioning that, if one formally takes b
j

i (k) → 0, the relations (2.6)–(2.8)
trivialize, while (2.3)–(2.5) reproduce the defining relations of a Zamolodchikov–Faddeev
(ZF) algebra [15,16], which is known to describe factorized scattering of (1 + 1)-dimensional
integrable systems on the whole line. The situation changes on the half line, where in order
to reproduce Cherednik’s scattering amplitudes one needs [10] a reflection algebra, i.e. a BR

with the additional constraint

bli(k) b
j

l (−k) = δ
j

i (2.11)

which obviously prevents the vanishing of all boundary operators. The condition (2.11) has
important consequences; it implies that the mapping

� : ai(k) 	→ b
j

i (k)aj (−k) (2.12)

� : a∗i (k) 	→ a∗j (−k)bij (−k) (2.13)

� : b
j

i (k) 	→ b
j

i (k) (2.14)

leaves invariant the constraints (2.3)–(2.8) and extends therefore to an automorphism on BR .
�, which is called in what follows reflection automorphism, has a direct physical interpretation
in scattering theory: it provides a mathematical description of the intuitive physical picture
that, bouncing back from a wall, particles change the sign of their momenta (rapidities). In
fact, the two elements a∗i (−k) and a∗j (k)bij (k) are �-equivalent:

a∗i (−k) ∼ a∗j (k)bij (k). (2.15)

Combined with (2.6), equation (2.11) turns out to also be essential in the description of
symmetries.

For constructing representations of BR , it is essential to recognize an involution on it. Let
us consider for this purpose the mapping I defined by

I : a∗i (k) 	→ ai(k) ai(k) 	→ a∗i (k) b
j

i (k) 	→ bij (−k). (2.16)

When extended as an antilinear antihomomorphism on BR , I defines an involution, provided
that R satisfies

R
†j1j2
i1i2

(k1, k2) = R
j1j2
i1i2

(k2, k1). (2.17)

Here and in what follows the dagger stands for matrix Hermitian conjugation, i.e.

R
†j1j2
i1i2

(k1, k2) ≡ R
i1i2

j1j2
(k1, k2) (2.18)

the bar indicating complex conjugation. The condition (2.17) is known in the literature on
factorized scattering as Hermitian analyticity. We observe in passing that a larger class of
involutions with the appropriate generalization of (2.17) has been introduced in [10].

Since BR is an infinite algebra, for the moment our considerations are a bit formal. In
order to give them a precise mathematical meaning, one can construct [10] a class of Fock
representations of the reflection algebra with involution {BR, I }, characterized by the following
requirements:
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(1) The representation space H is a Hilbert space with scalar product 〈·, ·〉;
(2) The generators (2.1) and (2.2) are operator valued distributions with common and invariant

dense domain D ⊂ H, where equations (2.3)–(2.8) hold. The involution I defined by
equation (2.16) is realized as a conjugation with respect to 〈·, ·〉;

(3) There exists a vector (vacuum state) � ∈ D which is annihilated by ai(k). � is cyclic
with respect to {a∗i (k)} and 〈� , �〉 = 1.

These requirements imply that the c-number distributions:

B
j

i (k) ≡ 〈� , b
j

i (k)�〉 (2.19)

satisfy

B
†j
i (k) = B

j

i (−k) (2.20)

which, being an analogue of (2.17), is called boundary Hermitian analyticity. One can show
moreover that the vacuum vector � is unique (up to a phase factor) and satisfies

b
j

i (k)� = B
j

i (k)�. (2.21)

Therefore, taking the vacuum expectation value of equations (2.6) and (2.11), one finds

R
l2l1
i1i2

(k1, k2) B
m1
l1
(k1) R

j1m2
l2m1

(k2,−k1) B
j2
m2
(k2)

= B
l2
i2
(k2) R

m2m1
i1l2

(k1,−k2) B
l1
m1
(k1) R

j1j2
m2l1

(−k2,−k1) (2.22)

Bl
i (k) B

j

l (−k) = δ
j

i . (2.23)

We thus recover at the level of Fock representation the boundary Yang–Baxter equation (2.22),
originally derived in [11]. Because of (2.23), we will refer to B as the reflection matrix.

Given a reflection algebra {BR, I }, its Fock representations are classified by all possible
reflection matricesB, which actually parametrize the boundary conditions. More precisely, any
B-matrix satisfying equations (2.20), (2.22) and (2.23) defines a Fock representation FB , whose
explicit construction is given in [10]. Each FB uniquely defines in turn a unitary scattering
operator S, corresponding to the integrable model described by {BR, I }. The emerging picture
is therefore the following. The mere fact that we are dealing with an integrable system with
boundary shows up at the algebraic level, turning the ZF algebra into a reflection algebra. The
details of the boundary condition enter at the representation level through the reflection matrix
B. We stress at this point another sharp difference between reflection and ZF algebras, the
latter admitting a unique (up to unitary equivalence) Fock representation.

Let us turn finally to the question of symmetries, considering for instance the simplest
non-relativistic Hamiltonian that comes to mind, namely

H =
∫ ∞

−∞
dp p2a∗i (p)ai(p). (2.24)

Using equations (2.7) and (2.8), one easily verifies that[
H , b

j

i (k)
] = 0. (2.25)

Therefore, besides capturing the presence of boundaries, bji (k) generate integrals of motion,
whose algebra is encoded in the boundary exchange relations (2.6).

It will be our main objective in what follows to examine thoroughly this observation on both
purely algebraic (section 4) and Fock representation (section 5) levels. In order to gain some
intuition from a concrete example, we find it useful to illustrate first the above abstract setup
by means of the gl(N)-invariant nonlinear Schrödinger (gl(N)-NLS) model on the half line.
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Note also that the property (2.25) can be extended to a wide class of operators Hn:

[Hn, b
j

i (k)] = 0 with Hn =
∫ ∞

−∞
dp pna∗i (p)ai(p) (2.26)

leading to the notion of hierarchy. However, we want to stress that one has to check the vanish-
ing of the commutators between differentHn to get a true hierarchy. A direct calculation shows

[Hn,Hm] = (
(−1)n − (−1)m

) ∫ ∞

−∞
dp pm+na∗i (−p)b

j

i (−p)aj (p). (2.27)

Thus, it is only the Hn of same parity that commute one with each other, and the hierarchy
should be associated with the ‘even’ Hamiltonians H2n. The hierarchy associated with the
‘odd’ Hamiltonians H2n+1 is trivial in the Fock representation, because there

H2n+1 = 0. (2.28)

In what follows, we will concentrate on the Hamiltonian H2, but one has to keep in mind that
the properties will apply to the whole hierarchy {H2n, n ∈ N}.

3. The NLS model on the half line

The dynamics of the gl(N)-NLS model can be described by a N -component field �i(t, x),
satisfying

(i∂t + ∂2
x )�i(t, x) = 2g �†j (t, x)�j (t, x)�i(t, x) g > 0 (3.1)

on the half line R+ = {x ∈ R : x > 0}. One must fix in addition the boundary conditions.
We start by requiring

lim
x↓0

(∂x − η)�i(t, x) = 0 η � 0 (3.2)

lim
x→∞�i(t, x) = 0. (3.3)

Equation (3.2) is the so-called mixed boundary condition; for η = 0 and in the limit η → ∞
it reproduces the familiar Neumann and Dirichlet conditions, respectively. We will focus in
this section on the boundary value problem (3.1)–(3.3), postponing the consideration of more
general integrability preserving boundary conditions to section 4.

In spite of the fact that the NLS model is among the most studied integrable systems, to
our knowledge there only exist a few papers addressing the problem on R+. References [14]
and [17] deal essentially with the proof of integrability, whereas [12] and [13] are concerned
with the construction of the quantum field � and the relative off-shell correlation functions.
We will follow [12, 13] below, recalling first the basic structures which enter the second
quantization of the boundary value problem (3.1)–(3.3):

(1) A Hilbert space {Hg,η, 〈·, ·〉} describing the states of the system;
(2) An operator valued distribution �(t, x) which acts on an appropriate dense domain

D ⊂ Hg,η and satisfies:
(a) the canonical commutation relations:

[�i(t, x),�j (t, y)] = [�∗i (t, x),�∗j (t, y)] = 0 (3.4)

[�i(t, x),�
∗j (t, y)] = δ

j

i δ(x − y) (3.5)
where �∗ is the 〈·, ·〉-Hermitian conjugate of �;

(b) the equation of motion:
(i∂t + ∂2

x )〈ϕ,�i(t, x)ψ〉 = 2g 〈ϕ, : �j�
∗j�i : (t, x)ψ〉 ∀ ϕ,ψ ∈ D (3.6)

where : . . . : denotes a suitably defined normal product;
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(c) the boundary conditions:
lim
x↓0

(∂x − η) 〈ϕ , �i(t, x)ψ〉 = 0 ∀ ϕ,ψ ∈ D (3.7)

lim
x→∞〈ϕ , �i(t, x)ψ〉 = 0 ∀ ϕ,ψ ∈ D (3.8)

(3) A fundamental state � ∈ D, which is cyclic with respect to �∗.

It has been shown in [13] that all these structures can be explicitly realized in terms of the
reflection algebra BR defined by the exchange matrix:

R
j1j2
i2i1

(k1, k2) = 1

k1 − k2 + ig

[
ig δj1

i1
δ
j2
i2

+ (k1 − k2) δ
j2
i1
δ
j1
i2

]
(3.9)

and the associated Fock representation FB with reflection matrix:

B
j

i (k) = k − iη

k + iη
δ
j

i . (3.10)

One has to identify for this purpose Hg,η with the Fock space, � with the Fock vacuum and
〈·, ·〉 with the scalar product of the representation FB . Moreover, the quantum field � admits
the expansion

�i(t, x) =
∞∑
n=0

(−g)n�
(n)
i (t, x) (3.11)

where

�
(n)
i (t, x) =

∫ ∞

−∞

n∏
i=1
j=0

dpi

2π

dqj
2π

ei
∑n

j=0(xqj−tq2
j )−i

∑n
i=1(xpi−tp2

i )∏n
i=1

[
(pi − qi−1 − iε) (pi − qi − iε)

]
×a∗j1(p1) . . . a

∗jn (pn) ajn(qn) . . . aj1(q1)ai(q0) (3.12)

ai and a∗j representing the BR generators in FB . By construction, the domain D involves only
vectors with finite, although arbitrary large, particle number. Combining this property with the
normal ordered form of�(n), one concludes that the series (3.11) converges in mean value on D.

Equation (3.12) is the quantum inverse scattering transform for the gl(N)-NLS model on
R+. The field � admits (strong) asymptotic limits, giving raise to the following asymptotic
states:

|k1, i1; . . . ; kn, in〉in = a∗i1(k1) . . . a
∗in (kn)� k1 < · · · < kn < 0 (3.13)

|p1, j1; . . . ;pm, jm〉out = a∗j1(p1) . . . a
∗jm(pm)� p1 > · · · > pn > 0. (3.14)

The vectors (3.13) and (3.14) generate the asymptotic in- and out-spaces, respectively. Both
of these spaces are dense in Hg,η and the model is asymptotically complete in the range g > 0
and η � 0. The connection with Cherednik’s scattering theory [11] is obtained on the level of
scattering amplitudes:

out〈p1, j1, . . . , pm, jm|k1, i1, . . . , kn, in〉in. (3.15)

The explicit form of (3.15) is easily derived and involves a product of R and B factors: any
R factor describes a two-body scattering in the bulk R+, while the B factors take into account
the reflection from the boundary.

It is worth stressing that the time evolution of the field �(t, x) is generated precisely by
the Hamiltonian (2.24). In fact, by means of equation (3.12) one gets

�i(t, x) = eitH �i(0, x) e−itH . (3.16)

Therefore, according to our discussion at the end of the previous section, the boundary operators
b
j

i (k) generate integrals of motion for thegl(N)-NLS model on R+. The relative algebra, which
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follows from equation (2.6) by inserting the specific exchange factor (3.9), will be investigated
in the next section.

In conclusion, we point out that the quantum field (3.11), (3.12) solves (3.6) for
any reflection matrix B satisfying equation (2.22) with R given by (3.9). One can also
demonstrate [13] that, for any ϕ, ψ ∈ D, there exist N square integrable functions χi(k),
such that

〈ϕ , �i(t, x)ψ〉 =
∫ ∞

−∞

dk

2π
e−itk2 [

δ
j

i eixk + B
j

i (k)e
−ixk

]
χj (k). (3.17)

This identity implies not only (3.7) and (3.8), but allows us to analyse (see section 5) the
boundary condition at x = 0 for general B factors.

4. The NLS symmetry algebra

Now we bring our attention to the SR subalgebra defined from the boundary generators (2.2)
and exchange relation (2.6), when the R-matrix is chosen as in (3.9). In the standard notation,
the R-matrix takes the form:

R12(k) = 1

k + i g
(k I ⊗ I + ig P12) (4.1)

where I is the N × N identity matrix, P12 ≡ P = ∑N
i,j=1 Eij ⊗ Eji is the flip operator, and

Eij is the N × N matrix with 1 at position (i, j).

4.1. Calculation of the SR algebra

Let us rewrite (2.6) as

R(k1 − k2) b1(k1) R(k1 + k2) b2(k2) = b2(k2) R(k1 + k2) b1(k1) R(k1 − k2) (4.2)

or as commutation relation

[b1(k1), b2(k2)] = ig

k1 − k2
(b2(k2)b1(k1)P − Pb1(k1)b2(k2))

+
ig

k1 + k2
(b2(k2)Pb1(k1) − b1(k1)Pb2(k2)) − g2

k2
1 − k2

2

[b2(k2), b2(k1)] (4.3)

where

b1(k) =
N∑

i,j=1

bij (k) Eij ⊗ I and b2(k) =
N∑

i,j=1

bij (k) I ⊗ Eij . (4.4)

Note that it enters in the algebras of type ABCD, introduced in [18], and as such is well
defined, since it obeys the corresponding consistency conditions (see [18] for details).

We develop b(k) as a formal power series in k−1:

b(k) =
∑
n�0

k−nb(n) =
∑
n�0

N∑
i,j=1

k−nb
(n)
ij Eij . (4.5)

Plugging this expression into (4.2) leads to the following commutation relations:
∞∑

m,n=0

[b(m)
1 , b

(n)
2 ] k−m

1 k−n
2 =

∞∑
p,q,r=0

{
ig

(
b
(q)

2 b
(p)

1 P − Pb
(p)

1 b
(q)

2

+(−1)r
(
b
(q)

2 Pb
(p)

1 − b
(p)

1 Pb
(q)

2

))
k

−p−r−1
1 k

r−q

2

−g2
[
b
(q)

2 , b
(p)

2

]
k

−p−2r−2
1 k

2r−q

2

}
. (4.6)
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In order for the SR algebra to be well-defined, no positive power of k can be admitted to the
r.h.s. of the above expression. A direct computation shows that spurious terms are avoided by
the necessary and sufficient conditions:

b(k)b(−k) = f (k) I with f (k) = 1 +
∞∑

m=1

f2mk
−2m even function (4.7)

[b(0)1 , b2(k)] = 0 i.e. all the b
(0)
ij generators are central. (4.8)

We remark that the condition (4.7) is a natural generalization of the physical condition (2.11)
obtained in section 2. In the following, we will take f (k) as a pure C-function. The
normalization of f (k) is fixed by limk→∞ f (k) = 1.

Before commenting on these constraints, let us note that the commutation relations can
then be rewritten as

[b(m)
1 , b

(n)
2 ] = ig

m−1∑
r=0

{ (
b
(n+r)
2 b

(m−1−r)
1 − b

(m−1−r)
2 b

(n+r)
1

)
P

+(−1)r
(
b
(n+r)
2 Pb

(m−1−r)
1 − b

(m−1−r)
1 Pb

(n+r)
2

) }

−g2
µ∑

r=0

[
b
(n+2r)
2 , b

(m−2−2r)
2

]
where µ =

[
m − 2

2

]
(4.9)

that is

[b(m)
ij , b

(n)
kl ] = ig

m−1∑
r=0

{ (
b
(n+r)
kj b

(m−1−r)
il − b

(m−1−r)
kj b

(n+r)
il

)

+(−1)r
(
δil b

(n+r)
ka b

(m−1−r)
aj − δkj b

(m−1−r)
ia b

(n+r)
al

) }

−g2
µ∑

r=0

δij

(
b
(n+2r)
ka b

(m−2−2r)
al − b

(m−2−2r)
ka b

(n+2r)
al

)
(4.10)

and also

[bij (k1), bkl(k2)] = ig

k1 − k2

(
bkj (k2)bil(k1) − bkj (k1)bil(k2)

)
+

ig

k1 + k2

(
δil bka(k2)baj (k1) − δkj bia(k1)bal(k2)

)
− g2

k2
1 − k2

2

δij (bka(k2)bal(k1) − bka(k1)bal(k2)) . (4.11)

In particular, for m = 1, we get

[b(1)ij , b
(n)
kl ] = ig

(
b
(n)
kj b

(0)
il + δil b

(n)
ka b

(0)
aj − b

(0)
kj b

(n)
il − δkj b

(0)
ia b

(n)
al

)
(4.12)

which shows that, in each representation where b(0) is a constant, the b(1) generators form a
Lie subalgebra and the b(n) generators (for any given n) fall into representations of this Lie
subalgebra. In what follows, we will consider only this type of representation.

4.1.1. Commutative subalgebras of the SR-algebra. We give in this short section some
commutative subalgebras which will be used in the following.



Spontaneous symmetry breaking in the gl(N)-NLS hierarchy on the half line 8353

Property 4.1. Let us introduce

t (k) = tr(b(k)) =
∞∑
n=0

k−nt (n) (4.13)

t (k) defines a commutative subalgebra of SR: [t (k1), t (k2)] = 0.

Proof. We take the trace in the auxiliary space 1 of the relation (4.3):

[t (k1), b(k2)] = 2ik1g

k2
1 − k2

2

[b(k2), b(k1)]. (4.14)

Then, taking again the trace we get

[t (k1), t (k2)] = 2ik1g

k2
1 − k2

2

tr
(
[b(k2), b(k1)]

)
. (4.15)

From [t (k1), t (k2)] = −[t (k2), t (k1)], we deduce tr([b(k2), b(k1)]) = 0, which implies
[t (k1), t (k2)] = 0. �
Property 4.2. Let M be any constant matrix such that M2 = I and correspondingly

t̃M(k) = tr
(
Mb(k)

) =
∞∑
n=0

k−nt̃
(n)
M (4.16)

t̃M(k) defines a commutative subalgebra of SR which commutes with the one given in
proposition 4.1:

[t̃M(k1), t̃M(k2)] = 0 and [t (k1), t̃M(k2)] = 0. (4.17)

Proof. We start again with (4.3), multiply it by M1 ≡ M ⊗ I, and then take the trace in the
auxiliary space 1:

[t̃M(k1), b(k2)] = ig

k1 − k2

(
b(k2)Mb(k1) − b(k1)Mb(k2)

)
+

ig

k1 + k2
[b(k2)b(k1),M] − g2 tr(M)

k2
1 − k2

2

[b(k2), b(k1)]. (4.18)

Then, after a product on the left by M and the trace, we get

[t̃M(k1), t̃M(k2)] = ig

k1 − k2
tr M

(
b(k2)Mb(k1) − Mb(k1)Mb(k2)

)
−g2 tr(M)

k2
1 − k2

2

tr
(
M[b(k2), b(k1)]

)
.

The left-hand side of the above expression is skew-symmetric in (k1, k2), while the right-hand
side is symmetric, so that both sides are identically zero. This proves the first part of the
assertion.

Now, taking the trace of (4.18), one gets

[t̃M(k1), t (k2)] = ig

k1 − k2
tr

(
b(k2)Mb(k1) − b(k1)Mb(k2)

)
(4.19)

which proves that [t̃M(k1), t (k2)] is symmetric under the exchange u ↔ v. On the other hand,
if one multiplies (4.14) by M and then takes the trace, one obtains

[t (k1), t̃M(k2)] = 2ik1g

k2
1 − k2

2

tr
(
M[b(k2), b(k1)]

)
. (4.20)

The antisymmetric part in (k1, k2) of the above expression shows that we have
tr(M[b(k2), b(k1)]) = 0, which then proves the second assertion. �
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4.2. Analysis of the consistency relations

We now turn to the consequences of the constraints (4.7) and (4.8). As far as b(0) is concerned,
we have already seen that it must be central, but the consistency relation (4.7) also implies(

b(0)
)2 = I. (4.21)

In the Fock representations FB we consider, b(0) is a constant matrix and (4.21) shows that it
can be diagonalized (by a constant gl(N) matrix). Thus, up to a conjugation, one can suppose
that we have

b(0) = E =
N∑
i=1

εi Eii with εi = ±1. (4.22)

For convenience, we will use the notation

A = {α such that εα = +1} ⊂ [1, N ] dimA = M

Ā = {ᾱ such that εᾱ = −1} ⊂ [1, N ] dimĀ = N − M.
(4.23)

In the basis (4.22), the commutation relations with the Lie subalgebra generators are

[b(1)ij , b
(n)
kl ] = ig(εi + εj )

(
δil b

(n)
kj − δkj b

(n)
il

)
(4.24)

which indicates that the Lie subalgebra depends on the choice of E. Indeed, the consistency
relation (4.7) together with the choice of b(0) = E lead to

b
(1)
αβ̄

= 0 = b
(1)
ᾱβ (4.25)

so that the Lie subalgebra in SR is a gl(M) ⊕ gl(N − M) one.
More generally, the analysis of the consistency relations shows that b(2n+1)

αβ̄
, b(2n+1)

β̄α
, b(2n+1)

αβ

and b
(2n+1)
ᾱβ̄

can be expressed in terms of the other generators, so that SR is generated by

S(2n)
R =

{
b
(2n)
αβ̄

, b
(2n)
β̄α

}
(α∈A, β̄∈Ā)

= (M,N − M) + (M,N − M) (4.26)

S(2n+1)
R =

{
b
(2n+1)
αβ , b

(2n+1)
ᾱβ̄

}
(α,β∈A, ᾱ,β̄∈Ā)

= (M2, 0) + (0, (N − M)2) (4.27)

where we have indicated the decomposition in gl(M) ⊕ gl(N − M) representations.

5. The NLS reflection matrices

Now, we come to the explicit construction of the reflection matrices as defined by (2.19), (2.20).
As already expressed in section 2, to each allowedB matrix (defined up to a gl(N) conjugation,
see below) is associated a Fock space representation FB of the reflection algebra (BR, I ).
Indeed the value of the operator b(k) on the Fock space vacuum � is directly given by the
matrix B(k): see (2.21).

5.1. Classification of the B reflection matrices

Condition (2.22), with R again defined by (4.1), leads to the equations

[B(k1), B(k2)] = 0 (5.1)

B1(k1)B1(k2) − B2(k2)B2(k1) = k1 + k2

k1 − k2
(B2(k2)B1(k1) − B2(k1)B1(k2)) (5.2)

where

B1(k) =
N∑

i,j=1

Bi
j (k)Eij ⊗ I and B2(k) =

N∑
i,j=1

Bi
j (k) I ⊗ Eij . (5.3)
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From (5.1), one immediately deduces that the B(k) matrices (∀ k) can simultaneously put
into a triangular form using a constant Gl(N) matrix:

B(k) = U T (k)U−1 with [T (k1), T (k2)] = 0. (5.4)

Moreover, since we have

R12(k1 − k2)U1U2 = U2U1R12(k1 − k2) (5.5)

the transformation (5.4) defines an automorphism of the whole algebra BR , as well as of the
condition (2.11). Hence, we can suppose without any restriction that the matrices B(k) are
triangular.

Imposing k2 = −k1 in (5.2) implies

B(k)B(−k) = B(−k)B(k) = ρ(k)I (5.6)

where ρ is an even function which must be real in order to satisfy (2.20).
Then, a detailed study (see the appendix) of (5.2) leads to the following classification of

B reflection matrices:

Case ρ(k) �= 0 B(k) = β(k)
I + iak E

1 + iak
(5.7)

B(k) = β(k)E (5.8)

B(k) = β(k) (I + akJ) (5.9)

Case ρ(k) = 0 B(k) = β(k) J (5.10)

with the conditions

E
2 = I J

2 = 0 a ∈ R. (5.11)

Note that,s because of the Gl(N) invariance, E can be taken diagonal:

E =
N∑
i=1

εi Eii with (Eii)kl = δikδil (5.12)

and J can be fixed to its Jordanian form:

J =



J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jr


 with Ji = (0) or

(
0 1
0 0

)
1 � i � r. (5.13)

Requiring the matrix B(k) to obey the condition (2.20) leads to the supplementary relation:

β(k)∗ = β(−k). (5.14)

Let us remark that the solution (5.9) obeys (2.22), but not to the development (4.4), and as
such should be rejected in this context. The other solutions can all be expanded in series of
k−1 (provided β(k) can be).

5.2. Boundary conditions associated with B(k)

From the algebraic study of the SR algebra and its Fock representations, one can determine the
boundary conditions obeyed by the physical fields �(x, t). For such a purpose we associate
with each reflection matrix B(k) a differential operator (in the variable x) DB that will act on
�(x, t). From (3.17), one infers that this operator will be fixed by its value on the eigenstates

λk(x) = eikx + B(k)e−ikx (5.15)
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through the equation

DB λk(x)|x=0 = 0. (5.16)

We restrict our analysis to the physical condition

B(k) · B(−k) = I. (5.17)

In all cases, the boundary condition for the physical field �(x, t) takes the form:

DB �(x, t)|x=0 = 0. (5.18)

We specify below the operator DB according to the classification (5.7)–(5.10).

5.2.1. Case of B(k) = β(k)I. From the condition β(k)β(−k) = 1, one deduces that β(k)
can be rewritten as

β(k) = A(k) + i

A(k) − i
with A(k) real odd function. (5.19)

Defining the differential operator DA through

(DAf )(y) =
∫

dx Â(x) f (x + y) ∀ f C-function (5.20)

where Â is the inverse Fourier transform of A. By definition of Â, we have

DAep = A(p)ep where ep(y) = exp(ipy). (5.21)

This implies

(DA + i)λk = (A(k) + i)ek + β(k)(A(−k) + i)e−k = (A(k) + i)(ek − e−k). (5.22)

In other words, one gets (DA + i)λk(x)|x=0 = 0, and DB = DA + i is the required operator.
Let us remark that in the particular case advocated in (3.10)

β(k) = k − iη

k + iη
i.e. A(k) = k

η
(5.23)

we get Â(x) = −i
η

∂
∂x

and we recover the boundary condition (3.2), using the fact that
∂xf (x + y) = ∂yf (x + y).

5.2.2. Case of B(k) = β(k)E. As in the previous case, we introduce the odd function
A defined in (5.19). The calculation is similar to the previous one, except for the matrix
dependence. We define the differential operator DA through (5.20). Then, one can choose

DB = I + E

2
(DA + i) +

I − E

2
(DA + i)∂x. (5.24)

This operator will obey the condition (5.16), because of the properties:

DAek = A(k)ek and DA∂xek = ikA(k)ek (5.25)

(I + E)E = I + E and (I − E)E = −(I − E) (5.26)

which lead to

DBλk = I + E

2
(A(k) + i)(ek − e−k) +

I − E

2
ik(A(k) + i)(ek − e−k). (5.27)

It is then obvious that DBλk|x=0 = 0.
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5.2.3. Case of B(k) = β(k) I+iak E

1+iak . This case comes as a mixing of the two previous ones.
We first rewrite B as

B(k) = β(k)
I + E

2
+ β̃(k)

I − E

2
with β̃(k) = β(k)

1 − iak

1 + iak
(5.28)

and define A(k) by (5.19) and Ã(k) by

β̃(k) = Ã(k) + i

Ã(k) − i
i.e. Ã(k) = A(k) + ak

1 − akA(k)
. (5.29)

The differential operators DA and DÃ will be constructed as above, and it is straightforward
to check that

DB = I + E

2
(DA + i) +

I − E

2
(DÃ + i) (5.30)

obeys the relation (5.16).

6. Spontaneous symmetry breaking

In the Fock space representation FB of the reflection algebra {BR, I }, once the matrix B(k)

is fixed, one knows all the operators b(n) which have non-vanishing value on �. Since the
SR algebra constitutes the symmetry algebra of our problem, we are exactly faced with a
mechanism of spontaneous symmetry breaking for our reflection algebra, itself part of our
BR algebra. We present a generating function for the broken generators, and show that these
generators form a commutative subalgebra of SR .

6.1. Case of B(k) = β(k)I

We start with the reflection matrix:

B(k) = β(k)I with β(k) =
∑
n∈J

βnk
−n βn �= 0 ∀n ∈ J ⊂ N. (6.31)

The vacuum expectation value of b(k) is thus

〈b(p)ij 〉 = βpδij ⇒ 〈b(p)ii − b
(p)

jj 〉 = 0 ∀p. (6.32)

Thus, the broken generators are all contained in3

N∑
i=1

b
(p)

ii = tr(b(p)) ∀p ∈ J. (6.33)

We first gather them into

tB(u) =
∑
p∈J

u−p tr(b(p)). (6.34)

Let us define the operator (depending on the new variable u and on the variable x = k−1):

Dk
u =

∑
p∈J

1

p!

(
u−1∂

)p ≡ d(u−1∂) with ∂ = ∂

∂(k−1)
d(x) =

∑
p∈J

xp

p!
. (6.35)

Then, from an obvious calculation, we have:

3 We will ignore in our general approach the possibility of two broken generators of different grade, i.e. tr b(n) and
tr b(m), to combine and form a third element, i.e. βm tr b(n) − βn tr b(m), for which the symmetry is restored. A way
of determining this last element (which algebraically annihilates the vacuum) would be to construct, when possible,
a compensating transformation in the momentum space which preserves the correlation functions.
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Property 6.1. The generating function tB(u) is given by

tB(u) = tr(Dk
ub(k))|k=∞ = Dk

u t (k)|k=∞ (6.36)

where t (k) has been defined in (4.13). It satisfies

tB(u)� = B(u)�. (6.37)

6.2. Case of B(k) = β(k)E

Similarly, for

B(k) = β(k)E with



β(k) =

∑
n∈J

βnk
−n βn �= 0 ∀n ∈ J ⊂ N

E =
M∑
α=1

Eαα −
N∑

ᾱ=M+1

Eᾱᾱ =
N∑
i=1

εiEii

(6.38)

we get the conditions:

〈b(p)ij 〉 = βpεiδij ⇒ 〈εib(p)ii − εjb
(p)

jj 〉 = 0 ∀p. (6.39)

Then, the broken generators are of the form:

N∑
i=1

εib
(p)

ii = tr(Eb(p)) ∀p ∈ J. (6.40)

With the same calculation, as in the previous section, we obtain:

Property 6.2. The generating function for the broken generators is given by

tB(u) =
∑
p∈J

u−p tr(Eb(p)) = tr(EDk
ub(k))|k=∞ = Dk

u t̃E(k)|k=∞ ∀u (6.41)

with the same definition (6.35) of Dk
u = d(u−1∂). t̃E(k) has been defined in (4.16), here with

M = E. tB(u) satisfies

tB(u)� = B(u)�. (6.42)

6.3. General case

Up to a redefinition of β and a, one can rewrite B(k) defined in (5.7) as

B(k) = β(k)

1 + a
(E + ak−1

I) (6.43)

so that the two previous cases are given by the limits a → 0 or ∞. We have

〈bij (k)〉 = β(k)

1 + a
(εi + ak−1)δij (6.44)

which shows that

〈bαα(k) − bββ(k)〉 = 0 ∀α, β = 1, . . . ,M (6.45)

〈bᾱᾱ(k) − bβ̄β̄ (k)〉 = 0 ∀ ᾱ, β̄ = M + 1, . . . , N. (6.46)

Once again, the broken generators are gathered in a generating function tB(u), and we get:
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Property 6.3. The generating function for broken generators is given by

tB(u) = tr
(
Dk

ub(k)
)∣∣

k=∞ = 1

1 + a

(
d(u−1∂)t (k) + ad̂(u−1∂)t̃E(k)

)∣∣
k=∞ (6.47)

where now the matrix differential operator is

Dk
u = 1

1 + a

(
E d(u−1∂) + I a d̂(u−1∂)

)
with β(k) =

∑
p∈J

βpk
−p.

As above

d(x) =
∑
p∈J

1

p!
xp and d̂(x) =

∑
p∈J

1

(p + 1)!
xp+1 (6.48)

tB(u) satisfies

tB(u)� = B(u)�. (6.49)

Corollary 6.4. The ‘broken generators’ form a commutative algebra:

[tB(u), tB(v)] = 0. (6.50)

Proof. Direct consequence of properties (4.1) and (4.2). �

Remark. In all cases, tB(u) is a scalar matrix, which means that we have at most only one
broken generator at each level.

6.4. Example: B(k) = I

We are in the particular case η = 0 of the conditions given in (3.2) and (3.3), so that the
boundary conditions are here

lim
x→∞<(x, t) = 0 and lim

x↓0
∂x<(x, t) = 0. (6.51)

Due to the form of B(k), it is obvious that none of the generators is broken. Hence, we are in
the very specific situation where no spontaneous symmetry breaking occurs.

However, we remark that the boundary has an effect on the symmetry algebra: indeed, the
Yangian symmetry which appears in the NLS hierarchy on the full line [19] is reduced here
down to the ‘smaller’ SR algebra.

7. The particular case N = 2

7.1. Characteristic of N = 2

The distinctive feature of N = 2 lies in the fact that the Pauli matrices, together with the
identity matrix, form a basis of 2×2 matrices and that all these matrices obey the property 4.2.
Indeed, one has:

Property 7.1. For N = 2, t (k) is central in the SR algebra, and a generating system of this
algebra is given by

t (k) = tr b(k) = b11(k) + b22(k) and t̃a(k) = tr(σab(k)) a = 1, 2, 3 (7.52)

or, more explicitly,

t̃1(k) = b12(k) + b21(k) t̃2(k) = i(b12(k) − b21(k)) t̃3(k) = b11(k) − b22(k).
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Proof. t̃a(k) are all generators obeying the property 4.2, which proves that t (k) commutes with
these generators. It is then enough to show that these generators form a generating system
(together with t (k)) to prove that t (k) is central (using also property 4.1). Using

σaσb = δab I + iεab
c σc (7.53)

and tr σa = 0, one gets

b(k) = 1
2

(
t (k) +

3∑
a=1

t̃a(k) σa

)
(7.54)

showing therefore that {t (k), t̃a(k), a = 1, 2, 3} is a generating system (as bij (k)). �

The above property allows us to give a simpler commutation relation for the SR-algebra:

Property 7.2. The commutation relations of the SR algebra, for N = 2, are given by

[t (k1), t (k2)] = 0 [t (k1), t̃a(k2)] = 0 (7.55)

[t̃a(k1), t̃b(k2)] = −2gεabc

k1 − k2

k1 t (k1)t̃c(k2) − k2 t (k2)t̃c(k1)

k1 + k2 + ig
(7.56)

t̃a(k1)t̃b(k2) = t̃a(k2)t̃b(k1). (7.57)

Proof. Equations (7.55) are just the rephrasing of the previous property. It remains to
prove (7.56). We start with (4.18), for M = σa , multiply it by σb and take the trace:

[t̃a(k1), t̃b(k2)] = ig

k1 − k2
tr(σbb(k2)σab(k1) − σbb(k1)σab(k2))

+
ig

k1 + k2
tr

(
σb[b(k2)b(k1), σa]

)
. (7.58)

Using the expression (7.54), this can be rewritten as

4[t̃a(k1), t̃b(k2)] = ig

k1 − k2
tr(σbσdσaσc)

(
t̃d (k2)t̃c(k1) − t̃d (k1)t̃c(k2)

)
+

ig

k1 + k2
tr

(
σb[σcσd, σa]

)
t̃c(k2)t̃d (k1)

+4iεab
c

(
ig

k1 + k2

(
t (k1)t̃c(k2) + t (k2)t̃c(k1)

)
+

ig

k1 − k2

(
t (k1)t̃c(k2) − t (k2)t̃c(k1)

) )
(7.59)

with summation over repeated indices. A direct calculation shows

tr
(
σb[σcσd, σa]

) = 4
(
δbcδad − δacδbd

)
(7.60)

tr
(
σbσdσaσc

) = 2
(
δbdδac + δadδbc − δabδcd

)
(7.61)

so that we get

[t̃a(k1), t̃b(k2)] = −1

2

ig

k1 − k2

(
[t̃a(k1), t̃b(k2)] − [t̃a(k2), t̃b(k1)]

)
+

ig

k1 + k2

(
t̃b(k2)t̃a(k1) − t̃a(k2)t̃b(k1)

)
+

iεabc

k2
1 − k2

2

(
2igk1 t (k1)t̃c(k2) − 2igk2 t (k2)t̃c(k1)

)
.
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Exchanging (a, k1) ↔ (b, k2), the above equality leads to

[t̃b(k2), t̃a(k1)] = −1

2

ig

k1 − k2

(
[t̃a(k1), t̃b(k2)] − [t̃a(k2), t̃b(k1)]

)
+

ig

k1 + k2

(
t̃a(k1)t̃b(k2) − t̃b(k1)t̃a(k2)

)
− iεabc

k2
1 − k2

2

(
2igk1 t (k1)t̃c(k2) − 2igk2 t (k2)t̃c(k1)

)
so that

2[t̃a(k1), t̃b(k2)] = [t̃a(k1), t̃b(k2)] − [t̃b(k2), t̃a(k1)]

= ig

k1 + k2

(
[t̃b(k2), t̃a(k1)] + [t̃b(k1), t̃a(k2)]

)
− iεabc

k2
1 − k2

2

(
4igk1 t (k1)t̃c(k2) − 4igk2 t (k2)t̃c(k1)

)
.

Computing [t̃b(k2), t̃a(k1)] + [t̃b(k1), t̃a(k2)] leads to
k1 − k2 + ig

k1 − k2

(
[t̃a(k1), t̃b(k2)] + [t̃a(k2), t̃b(k1)]

)
= 4iεabc

k2
1 − k2

2

(
igk1 t (k1)t̃c(k2) − igk2 t (k2)t̃c(k1)

)
which proves (7.56).

On the other hand, starting from (7.59), one computes

[t̃a(k1), t̃b(k2)] − [t̃a(k2), t̃b(k1)] = ig

k1 + k2

( {t̃a(k1), t̃b(k2)} − {t̃a(k2), t̃b(k1)}
)
.

Then, using (7.56), one gets

[t̃a(k1), t̃b(k2)] = [t̃a(k2), t̃b(k1)] (7.62)

{t̃a(k1), t̃b(k2)} = {t̃a(k2), t̃b(k1)} (7.63)

which is equivalent to the second relation. �
Corollary 7.3. The commutation relations with the Lie subalgebra generators are

[t̃ (1)a , t̃b(k2)] = −2gεab
c t (0)t̃c(k2) (7.64)

[t (1), t̃b(k2)] = 0. (7.65)

Proof. One picks up the term k−1
1 in the previous commutators. �

7.2. Vacuum preserving algebra when B(k) = β(k)I

In this case, the broken generators are all gathered in t (k), and we can replace t (k) (which is
central) by its value 2β(k).

Thus, the vacuum preserving algebra is just the one generated by t̃a(k), a = 1, 2, 3. Its
commutation relations are

[t̃a(k1), t̃b(k2)] = −4gεabc

(k1 + k2 + ig)(k1 − k2)

(
k1 β(k1)t̃c(k2) − k2 β(k2)t̃c(k1)

)
. (7.66)

Specifying to m = n = 1, we get[
t̃ (1)a , t̃

(1)
b

] = −4gεab
c t̃ (1)c (7.67)

which is an sl2 Lie subalgebra.
Then, at the Lie subalgebra level, the spontaneous symmetry breaking is a gl2 → sl2 one.



8362 M Mintchev et al

7.3. Vacuum preserving algebra when B(k) = β(k)σ3

The broken generator is now t̃3(k) and its value is 2β(k).
Thus, the vacuum preserving algebra is now the one generated by t (k), t̃1(k) and t̃2(k). It

is indeed an algebra, as can be seen from the commutators:

[t(k1), t(k2)] = 0 [t(k1), t̃a(k2)] = 0 a = 1, 2

[t̃1(k1), t̃1(k2)] = 0 [t̃2(k1), t̃2(k2)] = 0

[t̃1(k1), t̃2(k2)] = −4g

(k1 + k2 + ig)(k1 − k2)

(
k1 β(k2)t (k1) − k2 β(k1)t (k2)

)
.

However, since we are in the case E = σ3 �= I, the condition b(k)b(−k) = I implies in
particular b(1)12 = b

(1)
21 = 0, or in our generating system t̃

(1)
1 = t̃

(1)
2 = 0. Thus, for the values

m = n = 1, we get only one generator t (1), and one recognizes a gl1 Lie subalgebra.
Then, at the Lie subalgebra level, the spontaneous symmetry breaking is a gl1 ⊕gl1 → gl1

one.

8. Outlook and conclusions

We proposed in this paper an algebraic approach for studying the symmetry content and
the phenomenon of spontaneous symmetry breaking in integrable systems on the half line.
The main tool is the quantum inverse scattering transform, where the familiar ZF algebra
is replaced by the boundary algebra BR . The latter reflects the breakdown of translation
invariance on the half line, which is codified by a set of boundary generators. These generators
close a Sklyanin type subalgebra SR ⊂ BR and commute with the Hamiltonians of the whole
integrable hierarchy under consideration. For this reason SR represents the central point of
our investigation.

The basic, and actually unique, input of the scheme is the R-matrix, which describes the
two-body scattering and determines, via the boundary Yang–Baxter equation, all reflection
matrices respecting integrability. Each reflection matrix in turn fixes a boundary condition
and therefore the dynamics and the symmetry of the system. The concrete example we have
focused on is the gl(N)-NLS model, whose R-matrix is given by (4.1). If one considers
this model on the whole line, the underlying symmetry algebra is the Yangian Y (sl(N)) [20].
The corresponding generators can be constructed [19] in terms of the associated ZF algebra.
The latter admits a unique (up to unitary equivalence) Fock representation, whose vacuum is
annihilated by all Yangian generators, i.e. the whole Yangian Y (sl(N)) is an exact symmetry
of the theory. On the half line the situation is quite different. The counterpart of Y (sl(N)) is
the Sklyanin algebra SR . The integrability preserving boundary conditions are encoded in the
reflection matrices, which at the same time parametrize the inequivalent Fock representations
of the underlying boundary algebra BR . The existence of such representations is crucial. They
have no analogue in the ZF algebra and allow us to describe the physically inequivalent phases
of the system on the half line. The generators of SR , which do not annihilate the vacuum
of a given phase, are spontaneously broken in that phase. The relative Hamiltonian (2.24)
has a gapless spectrum [0,+∞), as required by the nonrelativistic version [21] of Goldstone’s
theorem.

The framework developed in this paper can be applied in a more general context to the
trigonometric and elliptic series of R-matrices as well. It will be interesting to investigate the
structure of the associated SR algebras, which will shed new light on the symmetry content of
the corresponding integrable models on the half line.
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Appendix. The reflection matrices

We have seen in section 5.1 that the reflection matrices B(k) are simultaneously
triangularizable. We present here the general solution to the equations:

[T (k1), T (k2)] = 0 (A.1)

T1(k1)T1(k2) − T2(k2)T2(k1) = k1 + k2

k1 − k2

(
T2(k2)T1(k1) − T2(k1)T1(k2)

)
(A.2)

where T (k) is a triangular matrix, subject to the condition (5.6). Note that the equations (A.1)
and (A.2) are invariant under multiplication of T by a scalar function β(k), so that we can
restrict the condition (5.6) to

T (k)T (−k) = T (−k)T (k) = ρ0 I with ρ0 =
{

0 (a)

1 (b).
(A.3)

Two main cases occur: T (k) diagonal or not.

A.1. Case of T (k) diagonal

The condition (A.1) is then automatically satisfied, and one has to choose the condition (A.3(b))
to get T (k) not null. Writing T (k) = diag(d1(k), . . . , dN(k)) and projecting equation (A.2)
on a generic diagonal element leads to

(x − y)(qij (x)qij (y) − 1) = (x + y)(qij (x) − qij (y)) (A.4)

with

qij (x) = di(x)

dj (x)
∀ i, j = 1, . . . , N (A.5)

where the condition di(k) �= 0 is ensured by (A.3-b). The general solution to the equation

(x − y)(g(x)g(y) − 1) = (x + y)(g(x) − g(y)) (A.6)

is given by

g(x) = 1 + ax

1 − ax
. (A.7)

Using the particular form (A.5) of qij (x), we get the solution

di(x) = d1(x)ri(x) with ri(x) = 1 + cx

1 − cx
or ± 1 ∀i (A.8)

that is

T (k) = β(k)
E + cxE′

1 + cx
(A.9)

where E and E′ are diagonal matrices with ±1 on the diagonal. Plugging this solution into
equation (A.2), we get the constraint

c(E1 − E2)(E
′
1 + E

′
2) = 0 (A.10)

the general solution of which leads to the solutions (5.7) and (5.8) (up to a scalar multiplication).

A.2. The case where T (k) is not diagonal

One writes T (k) = D(k) + S(k), where D is diagonal and S strictly triangular. Projecting
equations (A.1) and (A.2) on the diagonal shows that D(k) is of the form (5.7) and (5.8) or is
zero, depending on the value of ρ0.
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A.2.1. The subcase ρ0 = 0. Then, D = 0 and the equations for S are

(x − y)S(x)S(y) = 0 (A.11)

(x + y)(S1(x)S2(y) − S1(y)S2(x)) = 0. (A.12)

The solution is given by S(x) = β(x)S0 with S2
0 = 0. Using again the gl(N) invariance, one

can put the constant matrix S0 into its Jordanian form, and one recovers (5.10).

A.2.2. The subcase ρ0 = 1. Now, we have D(x) = E + cx−1I, and one has to treat separately
c = 0 and c �= 0. The techniques are similar in both cases: as an illustrative example, we
present here only c = 0 (i.e. D(x) = E).

Plugging the form of D(x) into (A.2), and taking the trace in the auxiliary space 2 we get

(x − y)(ES(y) + S(x)E + S(x)S(y)) = (x + y)ε(S(x) − S(y)) with ε = 1

N
tr(E).

If ε2 �= 1, one gets S(x) = S0, constant matrix, and the equation for T shows that
T 2 = (E + S0)

2 = I, which implies that T is diagonalizable: we are back to section A.1.
If ε2 = 1, E = εI, and one gets as equations

2x(S1(y) − S2(y)) − 2y(S1(x) − S2(x)) = ε(x + y)(S1(x)S2(y) − S1(y)S2(x))

[S(x), S(y)] = 0.

The solution is S(x) = xS0 with S2
0 = 0, due to (A.3), and we get the solution (5.9).
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